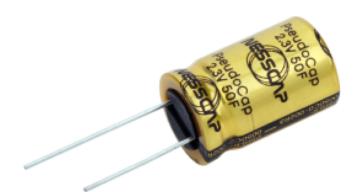
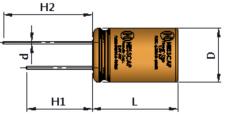


2.3V 50F Pseudocapacitor


PCAP0050 P230 S01

PSHLR-0050C0-002R3

FEATURES


- High performance product with low ESR
- Exceptional shock and vibration resistance
- Long lifetimes with up to 100,000 duty cycles*
- Compliant with RoHS and REACH requirements
- Recommended Applications:

Flashlights, LED, Memory Back-Up, Portable Hand Tools, Solar Charger, Off-Grid Lighting, Automotive Subsystems (Power Windows and Door Locks), and Others

See Note on Mounting Recommendations⁸

Datasheet

ELECTRICAL SPECIFICATIONS

Rated Voltage, V_R		2.3 VDC
Surge Voltage ¹		2.5 VDC
Rated Capacitance, C ²		50 F
Capacitance Tolerance	Min. / Max.	-10% / +20%
Initial DC-ESR, R_{DC}^{3}	Max.	36 mΩ
Maximum Leakage Current ⁴	76 μA	
Maximum Peak Current, Non-r	20 A	

OPERATING ENVIRONMENT / POWER & ENERGY

Operating Temperature Range	-25°C to 60°C
Maximum Stored Energy, $E_{max}^{~~6}$	36 mWh
Gravimetric Specific Energy ⁶	5.2 Wh/kg
Usable Specific Power ⁶	2.5 kW/kg
Impedance Match Specific Power ⁶	5.2 kW/kg

TYPICAL LIFETIME CHARACTERISTICS*

Projected DC Life at Room Temperature ⁷ (Continuous charging at V_R and 25 ± 10 °C)	10 years
DC Life at High Temperature ⁷ (Continuous charging at V_R and 60°C)	2,000 hours
Projected Cycle Life at Room Temperature ⁷ (Constant current charge-discharge from V_R to $1/2V_R$ at 25 ± 10 °C)	100,000 cycles
Shelf Life (Stored without charge at 25 \pm 10 °C)	2 years

DIMENSION & WEIGHT					
D (+0.5)	16.0 mm	H1 (Min.)	15.0 mm		
L (±1.0)	25.5 mm	H2 (Min.)	19.0 mm		
d (±0.05)	0.8 mm	A (±0.5)	7.5 mm		
Nominal Weigh	nt	7.0 g			

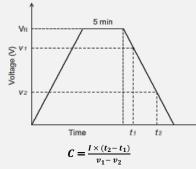
SAFETY & ENVIRONMENTAL

RoHS & REACH

*Results may vary. Additional terms and conditions, including the limited warranty, apply at the time of purchase. See the warranty details for applicable operating and use requirements.

2.3V 50F Pseudocapacitor

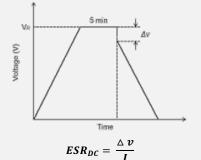
PCAP0050 P230 S01


NOTE

1. Surge Voltage

> Absolute maximum voltage, non-repetitive. The duration must not exceed 1 second.

2. Rated Capacitance (Measurement Method)


- > Constant current charge to V_R with 40mA.
- > Constant voltage charge at V_R for 5 min.
- > Constant current discharge to 0.9V with 40mA.

- where C is the capacitance (F);
 - *I* is the absolute value of the discharge current (A);
 - v_1 is the measurement starting voltage, 0.8 x V_R (V);
 - v_2 is the measurement end voltage, 0.4 x V_R (V);
 - t_1 is the time from discharge start to reach v_1 (s);
 - t_2 is the time from discharge start to reach u_2 (s)

3. Initial DC-ESR (Measurement Method)

- > Constant current charge to V_R with 40mA.
- > Constant voltage charge at $V_{\rm R}$ for 5 min.
- Constant current discharge with 40 * $C * V_R$ [mA] to 0.9V. e.g. In case of 2.3V 50F pseudo cell, 40 * 50 * 2.3 = 4,600 mA = 4.6A.

where ESR_{DC} is the DC-ESR (Ω);

 Δv is the voltage drop during first 10ms of discharge (V); I is the absolute value of the discharge current (A)

When ordering, please reference the Maxwell Model Number below.

4. Maximum Leakage Current (Measurement Method)

- > The capacitor is charged to its rated voltage V_R at 25°C.
- Leakage current is the amount of current measured after 72 hours of continuous holding of the capacitor at V_R .

5. Maximum Peak Current

Current that can be used for 1-second discharging from the rated voltage to the half-rated voltage under the constant current discharging mode.

$$I = \frac{\frac{1}{2}V_R}{\Delta t / C + ESR_{DC}}$$

- where *I* is the maximum peak current (A); V_R is the rated voltage (V); $\triangle t$ is the discharge time (sec); $\triangle t = 1$ sec in this case; C is the rated capacitance (F); ESR_{DC} is the maximum DC-ESR (Ω)
- The stated maximum peak current should not be used in normal operation and is only provided as a reference value.

6. Energy & Power (Based on IEC 62391-2)

- > Maximum Stored Energy, E_{max} (Wh) = $\frac{\frac{1}{2}CV_R^2}{2600}$
- > Gravimetric Specific Energy (Wh/kg) = $\frac{E_{Max}}{Weight}$
- $0.12 V_R^2$ Usable Specific Power (W/kg) = $\frac{0.12V_R}{ESR_{DC} \times Weight}$

$$0.25V_R^2$$

> Impedance Match Specific Power (W/kg) = $\frac{0.257 \text{ K}}{ESR_{DC} \times Weight}$

7. DC Life and Cycle Life Test

- > End-of-Life (EOL) Conditions:
 - Capacitance: -30% from the minimum rated value
 - DC-ESR: +100% from the maximum specified initial value
- > Capacitance and ESR measurements are taken at 25°C.

8. Mounting Recommendations

- > Provide properly spaced holes for mounting according to the specified cell dimension in order to minimize the terminal leads of the cell being mechanically stressed.
- > Do not place any through-holes directly underneath the cell or in the close proximity of the cell. Allow at least 5mm distance from any point on the outer diameter of the cell to the outer diameter of any through-hole.
- Protective coating of components on the PCB is strongly recommended in order to reduce the risk of the components being damaged in an event of electrolyte leakage.
- > The recommended mounting orientation is with the terminal leads pointing upward. Provide at least 2mm clearance from the safety vent and do not position anything
- near the safety yent that may be damaged by the yent rupture.
- > Assemble the cell on the PCB taking into account that the cell may not be completely hermetic during its lifetime. Electrolyte vapor and gases generated during normal operation may escape the package.
- Soldering guide for small and medium size cells is available and can be found at www.nesscap.com under Support -> Download.

Maxwell Model Number: PCAP0050 P230 S01	Maxwell Part Number: 133738	Nesscap Model Number: PSHLR-0050C0-002R3		
Maxwell Technologies, Inc.	Maxwell Technologies SA	Maxwell Technologies, GmbH	Maxwell Technologies	Nesscap Co., Ltd.
Global Headquarters	Route de Montena 65	Leopoldstrasse 244	Shanghai Trading Co., Ltd	17, Dongtangiheung-ro 681beon-gil,
3888 Calle Fortunada	CH-1728 Rossens	80807 Munich	Room 1005, 1006, 1007	Giheung-gu, Yongin-si,
San Diego, CA 92123	Switzerland	Germany	No. 1898, Gonghexin Road,	Gyeonggi-do
USA	Tel: +41 (0)26 411 85 00	Tel: +49 (0)89 4161403 0	Jing An District, Shanghai 200072	17102
Tel: +1 (858) 503-3300	Fax: +41 (0)26 411 85 05	Fax: +49 (0)89 4161403 99	P.R. China	Republic of Korea
Fax: +1 (858) 503-3301			Tel: +86 21 3680 4600	Tel: +82 31 289 0721
			Fax: +86 21 3680 4699	Fax: +82 31 286 6767

The data in this document 3001969 corresponds to the data in Nesscap document 20170914 Rev02. The information in this document is correct at time of printing and is subject to change without notice. Images are not to scale